Search results for "ARTIFICIAL NEURAL NETWORKS"

showing 10 items of 45 documents

Surrogate models for the compressive strength mapping of cement mortar materials

2021

Despite the extensive use of mortar materials in constructions over the last decades, there is not yet a robust quantitative method available in the literature, which can reliably predict their strength based on the mix components. This limitation is attributed to the highly nonlinear relation between the mortar’s compressive strength and the mixed components. In this paper, the application of artificial intelligence techniques for predicting the compressive strength of mortars is investigated. Specifically, Levenberg–Marquardt, biogeography-based optimization, and invasive weed optimization algorithms are used for this purpose (based on experimental data available in the literature). The c…

0209 industrial biotechnologyArtificial neural networksbusiness.industryComputer scienceCementCompressive strengthComputational intelligence02 engineering and technologyStructural engineeringSoft computing techniquesTheoretical Computer ScienceMortarSettore ICAR/09 - Tecnica Delle CostruzioniNonlinear system020901 industrial engineering & automationCompressive strength0202 electrical engineering electronic engineering information engineering020201 artificial intelligence & image processingGeometry and TopologyMortarbusinessMetakaolinSoftwareCement mortarSoft Computing
researchProduct

Is the nonREM–REM sleep cycle reset by forced awakenings from REM sleep?

2002

In selective REM sleep deprivation (SRSD), the occurrence of stage REM is repeatedly interrupted by short awakenings. Typically, the interventions aggregate in clusters resembling the REM episodes in undisturbed sleep. This salient phenomenon can easily be explained if the nonREM–REM sleep process is continued during the periods of forced wakefulness. However, earlier studies have alternatively suggested that awakenings from sleep might rather discontinue and reset the ultradian process. Theoretically, the two explanations predict a different distribution of REM episode duration. We evaluated 117 SRSD treatment nights recorded from 14 depressive inpatients receiving low dosages of Trimipram…

Activity CyclesMaleSelective REM sleep deprivationPolysomnographyAudiologyBehavioral NeuroscienceNIGHTSleep onset REM episodeDEPRIVATIONSlow-wave sleepmedia_commonDEPRESSIVE PATIENTSmedicine.diagnostic_testDepressionmusculoskeletal neural and ocular physiologyTRIMIPRAMINEMiddle AgedAntidepressive AgentsAnesthesiaLATENCIESFemaleWakefulnessArousalPsychologyAlgorithmspsychological phenomena and processesmedicine.drugVigilance (psychology)Adultmedicine.medical_specialtyREM episodePolysomnographymedia_common.quotation_subjectRapid eye movement sleepSleep REMExperimental and Cognitive PsychologyNon-rapid eye movement sleepmental disordersmedicineHumansWakefulnessMODULATIONUltradian rhythmINTERRUPTIONARTIFICIAL NEURAL NETWORKSRECOGNITIONTrimipramineUltradian processSleep cycleSleepEYE-MOVEMENT SLEEPPhysiology & Behavior
researchProduct

Stochastic Vulnerability Assessment of Masonry Structures: Concepts, Modeling and Restoration Aspects

2019

A methodology aiming to predict the vulnerability of masonry structures under seismic action is presented herein. Masonry structures, among which many are cultural heritage assets, present high vulnerability under earthquake. Reliable simulations of their response to seismic stresses are exceedingly difficult because of the complexity of the structural system and the anisotropic and brittle behavior of the masonry materials. Furthermore, the majority of the parameters involved in the problem such as the masonry material mechanical characteristics and earthquake loading characteristics have a stochastic-probabilistic nature. Within this framework, a detailed analytical methodological approac…

Artificial Neural Networkfailure criteriaComputer scienceRestoration mortarStructural system0211 other engineering and technologiesVulnerability020101 civil engineering02 engineering and technologylcsh:Technology0201 civil engineeringlcsh:Chemistryfragility analysisFragilitySeismic assessmentVulnerability assessmentForensic engineeringGeneral Materials ScienceMasonry structurelcsh:QH301-705.5InstrumentationArtificial Neural NetworksmonumentsFluid Flow and Transfer Processes021110 strategic defence & security studieslcsh:Tbusiness.industryProcess Chemistry and TechnologyGeneral EngineeringProbabilistic logicMonumentMasonrylcsh:QC1-999Computer Science ApplicationsCultural heritageSettore ICAR/09 - Tecnica Delle Costruzionilcsh:Biology (General)lcsh:QD1-999restoration mortarslcsh:TA1-2040Fragility analysiseismic assessmentlcsh:Engineering (General). Civil engineering (General)businessdamage indexlcsh:Physicsmasonry structuresstochastic modelingApplied Sciences
researchProduct

Early prediction of COVID-19 outcome using artificial intelligence techniques and only five laboratory indices

2022

We aimed to develop a prediction model for intensive care unit (ICU) hospitalization of Coronavirus disease-19 (COVID-19) patients using artificial neural networks (ANN). We assessed 25 laboratory parameters at first from 248 consecutive adult COVID-19 patients for database creation, training, and development of ANN models. We developed a new alpha-index to assess association of each parameter with outcome. We used 166 records for training of computational simulations (training), 41 for documentation of computational simulations (validation), and 41 for reliability check of computational simulations (testing). The first five laboratory indices ranked by importance were Neutrophil-to-lymphoc…

Artificial intelligence Artificial neural networks COVID-19 Laboratory indices SARS-CoV2Settore ICAR/09 - Tecnica Delle CostruzioniImmunologyImmunology and Allergy
researchProduct

Prediction of surface treatment effects on the tribological performance of tool steels using artificial neural networks

2019

The present paper discussed the development of a reliable and robust artificial neural network (ANN) capable of predicting the tribological performance of three highly alloyed tool steel grades. Experimental results were obtained by performing plane-contact sliding tests under non-lubrication conditions on a pin-on-disk tribometer. The specimens were tested both in untreated state with different hardening levels, and after surface treatment of nitrocarburizing. We concluded that wear maps via ANN modeling were a user-friendly approach for the presentation of wear-related information, since they easily permitted the determination of areas under steady-state wear that were appropriate for use…

Artificial neural networkComputer science0211 other engineering and technologiesMechanical engineering02 engineering and technologyengineering.materiallcsh:Technologylcsh:ChemistrySoft computing technique0202 electrical engineering electronic engineering information engineeringGeneral Materials Sciencesoft computing techniquesInstrumentationlcsh:QH301-705.5021101 geological & geomatics engineeringFluid Flow and Transfer ProcessesArtificial neural networklcsh:TProcess Chemistry and Technologyartificial intelligence techniquesGeneral EngineeringArtificial intelligence techniqueTribologyTribological performancelcsh:QC1-999Computer Science Applicationslcsh:Biology (General)lcsh:QD1-999lcsh:TA1-2040Tool steelengineering020201 artificial intelligence & image processinglcsh:Engineering (General). Civil engineering (General)artificial neural networkslcsh:PhysicsTribometerHardening (computing)
researchProduct

Efficient pruning of multilayer perceptrons using a fuzzy sigmoid activation function

2006

This Letter presents a simple and powerful pruning method for multilayer feed forward neural networks based on the fuzzy sigmoid activation function presented in [E. Soria, J. Martin, G. Camps, A. Serrano, J. Calpe, L. Gomez, A low-complexity fuzzy activation function for artificial neural networks, IEEE Trans. Neural Networks 14(6) (2003) 1576-1579]. Successful performance is obtained in standard function approximation and channel equalization problems. Pruning allows to reduce network complexity considerably, achieving a similar performance to that obtained by unpruned networks.

Artificial neural networkComputer sciencebusiness.industryTime delay neural networkCognitive NeuroscienceActivation functionRectifier (neural networks)PerceptronFuzzy logicComputer Science ApplicationsArtificial IntelligenceMultilayer perceptronFeedforward neural networkPruning (decision trees)Artificial intelligenceTypes of artificial neural networksbusinessNeurocomputing
researchProduct

Artificial neural networks and liver diseases: An economic and pre-imaging diagnosis

2013

Artificial neural networkSettore MED/09 - Medicina Internaliver diseasesArtificial neural networks; liver diseases
researchProduct

Short term wind speed prediction using Multi Layer Perceptron

2012

Among renewable energy sources wind energy is having an increasing influence on the supply of energy power. However wind energy is not a stationary power, depending on the fluctuations of the wind, so that is necessary to cope with these fluctuations that may cause problems the electricity grid stability. The ability to predict short-term wind speed and consequent production patterns becomes critical for the all the operators of wind energy. This paper studies several configurations of Artificial Neural Networks (ANN), a well-known tool able to estimate wind speed starting from measured data. The presented ANNs, t have been tested through data gathered in the area of Trapani (Sicily). Diffe…

Artificial neural networks Multi layer perceptron Feed forward network Forecasting Renewable energy Wind energy Wind speedSettore ING-IND/11 - Fisica Tecnica Ambientale
researchProduct

An Improved Load Flow Method for MV Networks Based on LV Load Measurements and Estimations

2019

A novel measurement approach for power-flow analysis in medium-voltage (MV) networks, based on load power measurements at low-voltage level in each secondary substation (SS) and only one voltage measurement at the MV level at primary substation busbars, was proposed by the authors in previous works. In this paper, the method is improved to cover the case of temporary unavailability of load power measurements in some SSs. In particular, a new load power estimation method based on artificial neural networks (ANNs) is proposed. The method uses historical data to train the ANNs and the real-time available measurements to obtain the load estimations. The load-flow algorithm is applied with the e…

Artificial neural networksBusbarComputer sciencepower system measurement020208 electrical & electronic engineeringArtificial neural networks (ANNs)power system managementpower measurementFlow method02 engineering and technologypower system measurementsload flow (LF)Power (physics)Control theoryload flowsmart grids0202 electrical engineering electronic engineering information engineeringstate estimationElectrical and Electronic Engineeringsmart gridInstrumentationSettore ING-INF/07 - Misure Elettriche E ElettronicheVoltage
researchProduct

Estimation of Granger causality through Artificial Neural Networks: applications to physiological systems and chaotic electronic oscillators

2021

One of the most challenging problems in the study of complex dynamical systems is to find the statistical interdependencies among the system components. Granger causality (GC) represents one of the most employed approaches, based on modeling the system dynamics with a linear vector autoregressive (VAR) model and on evaluating the information flow between two processes in terms of prediction error variances. In its most advanced setting, GC analysis is performed through a state-space (SS) representation of the VAR model that allows to compute both conditional and unconditional forms of GC by solving only one regression problem. While this problem is typically solved through Ordinary Least Sq…

Artificial neural networks; Chaotic oscillators; Granger causality; Multivariate time series analysis; Network physiology; Penalized regression techniques; Remote synchronization; State-space models; Stochastic gradient descent L1; Vector autoregressive modelGeneral Computer ScienceDynamical systems theoryComputer science02 engineering and technologyChaotic oscillatorsPenalized regression techniquesNetwork topologySettore ING-INF/01 - ElettronicaMultivariate time series analysisVector autoregression03 medical and health sciences0302 clinical medicineScientific Computing and Simulation0202 electrical engineering electronic engineering information engineeringRepresentation (mathematics)Optimization Theory and ComputationNetwork physiologyState-space modelsArtificial neural networkArtificial neural networksData ScienceTheory and Formal MethodsQA75.5-76.95Stochastic gradient descent L1Granger causality State-space models Vector autoregressive model Artificial neural networks Stochastic gradient descent L1 Multivariate time series analysis Network physiology Remote synchronization Chaotic oscillators Penalized regression techniquesRemote synchronizationStochastic gradient descentAutoregressive modelAlgorithms and Analysis of AlgorithmsVector autoregressive modelElectronic computers. Computer scienceSettore ING-INF/06 - Bioingegneria Elettronica E InformaticaGranger causality020201 artificial intelligence & image processingGradient descentAlgorithm030217 neurology & neurosurgeryPeerJ Computer Science
researchProduct